
A New Way to avoid trigger
based logging in PostgreSQL

(.. a BillPay use case)

Olakunle Olaniyi
Database Administrator
BillPay GmbH (A Klarna Group Company)
Email: olakunle.olaniyi@klarna.com

- As far as best practices go, we log events on selected tables caused by
inserts/deletes/updates using trigger(s).

- Destination table might or might not have identical structure as the
originating table.

- The who,when and what of events are usually of interests.
- Sometimes requirements prompt the use of fairly complicated logic in the

trigger functions.

Database Logging...

- Triggers are easy,convenient to setup and maintain and they work
incredibly well.

- Triggers actions ultimately determine the amount of overhead.
- There are limitations on the kind of operations they could be used for.

Some considerations ...

- Log/audit tables becoming too huge to be stored in the same database as
production data.

- We wanted to do more with changes on tables rather than logging and/or
auditing.

- Exploiting the same change streams from tables to be used by multiple
downstream applications.

Some more considerations

Logging using the streaming replication
protocol

(Logical Decoding)

- Extracts all persistent changes to a database's table(s).
- Changes are in commit order
- Provides outputs in an easy to understand format.
- No knowledge of the database's internal state required.
- Extract contents of WAL files into application specific form.
- Available on PostgreSQL v9.4+

Logical Decoding; What is it ?

- postgresql.conf
- wal_level must be at least logical
- max_replication_slots > 0
- Max_wal_senders > 0

- pg_hba.conf
- Should allow replication connection

- An output plugin written in C
- A suitable client to consume changes

What you need

- Replication Slot
- Provides the mechanism to store change streams that can be replayed to a

client in the order they were made on the origin server.
- Output Plugins

- Output plugins transform the data from the WAL’s internal representation into
the format the consumer of a replication slot desires

- Consumer clients
- Any client capable of capturing the transformed changes from replication slot using an

output plugin with either
- SQL decoding interface
- Streaming replication interface

Components

Physical Replication Slots :

- Used for streaming replication by replicas
- Requires no output plugin for consumption
- All or nothing consumption

Logical Replication Slots:

- Needed for logical decoding
- Output plugin is a must
- Table level consumption
- DDLs are not decoded

Replication slots

- Must be written in C to interface with the postgres backend to utilize various callbacks

- Must be installed on the database server for which replication slots are to be created

Output plugins

What we found out about output plugins...

- Part of the postgres core
- Text output format
- Not particularly useful but may serve as a basis for developing other plugins

Sample output :

BEGIN txid

table public.data: INSERT: id[integer]:1 data[text]:'1'

table public.data: INSERT: id[integer]:2 data[text]:'2'

COMMIT txid

test_decoding

- Developed and open sourced by 2ndQuadrant
- A very fast plugin
- Json output format
- Merged into pglogical decoding project - no longer available as a standalone plugin

Sample output :

{"action": "B", "has_catalog_changes": "f"}

 {"action": "I", "newtuple": {"ba": null, "js": null, "ts": null, "tx": "textval", "jsb": null, "seq": 1},
"relation": ["public", "demo"]}

 {"action": "C"}

pglogical_output

- Currently still alive - releases, development and bug fixes being applied
- Json output format
- Provides an acceptable decoding speed.
- Very enticing features e.g:

- including and excluding schemas and tables
- transaction timestamp, schema-qualified, LSN, data types, and transaction ids

- Supports a wide variety of platforms including Windows

wal2json

Sample output :

{"change": [

{"kind": "delete","schema": "public","table": "xpto","oldkeys": {"keynames": ["id"],"keytypes": [
"int4"],"keyvalues": [1]}}]

}

… wal2json

Your use case largely determines the replica identity you choose

- DEFAULT
- Only new records + old value(s) of changing pkey columns
- This is what you want; mostly

- USING INDEX
- Unique Indexes
- Same as Default

- FULL
- No key needed
- New + old records always written to WAL

- NOTHING

How much data is good enough ?

- Our client of choice -> Python
- Psycopg2

- connection_factory=psycopg2.extras.LogicalReplicationConnection

- For bytea data types, set decode=False for the start_replication call

Others :

- Java
- Postgresql java jdbc driver supports logical replication

- C
- libpq is all you need

Clients

An oversimplified Architecture

DB
(Slots
+
plugins)

Queuing
Tech
(Kafka)

Anything you
Can imagine

Producers client Consumer client

Consumer client

SELECT pg_create_logical_replication_slot(‘test_slot’,’wal2json’) ;

BEGIN ;
CREATE TABLE test_table
(
 t_id bigserial primary key,
 t_country text
);

INSERT INTO test_table(t_id,t_country) VALUES(3,’Italy’) ;

UPDATE test_table SET t_country = ‘Netherlands’ where t_id = 3 ;

COMMIT;

Logging Tables

Sample output from kafka topic :

{"action": "B", "xid": 50089281, "commit_time": "2018-06-22 14:25:02.68791+01", "startlsn": "6F/BE3CE6F8"}

{}

{"action": "I", "newtuple": {"t_id": 3, "t_country":’Italy’}, "relation": ["public", "test_table"]}

{"action": "U", "newtuple": {"t_id": 3, "t_country":‘Netherlands’}"relation": ["public", "test_table"]}

{"endlsn": 479933032184, "action": "C", "xid": 50089281, "commit_time": "2018-06-22 14:25:02.68791+01", "startlsn": "6F/BE3CE6F8"}

How do we queue in reality ?

- For logging and/or auditing tables default replica identity is barely enough.
- To capture old and new records full replca identity must be enabled for interested tables

- ALTER TABLE test_table REPLICA IDENTITY FULL
- UPDATE test_table SET t_country = ‘Holland’ where t_id = 3 ;

Output enrichment

{"action": "B", "xid": 50089281, "commit_time": "2018-06-22 14:35:02.68791+01", "startlsn": "6F/BE3CE6F9"}

{"action": "U", "newtuple": {"t_id": 3, "t_country":‘Netherlands’},"oldtuple": {"t_id": 3, "t_country":’Holland’}, "relation": ["public", "test_table"]}

{"endlsn": 479933032184, "action": "C", "xid": 50089281, "commit_time": "2018-06-22 14:35:02.68791+01", "startlsn": "6F/BE3CE6F9"}

More output

CREATE TABLE test_table_log
(
 tl_id bigserial,
 tl_t_id bigint,
 tl_t_country_new text,
 tl_t_country_old text,
 tl_action char(1)
);

Consume changes with our python client;
row = to_json(stream_payload)
new_row = row.get(‘newtuple’)
old_row = row.get(‘oldtuple’)
tl_t_id = new_row[‘t_id’]
tl_t_country_new = new_row[‘t_country’]
tl_t_country_old = old_row[‘t_country’]
tl_action = row[‘action’]

… in DB2

- A default Replica Identity on all tables of interest is adequate
- Create a replication slot
- Export a snapshot

- Select pg_export_snapshopt()
- Use pg_dump or some other method to get the data up to the current snapshot
- Consume changes from the slot to the DWH stage tables

- PostgreSQL upsert comes in handy here
- To prevent unwanted increase in WAL size, changes are queued in kafka
- Aside preventing increase in WAL size, queuing is of interest since the same changes is

used by different downstream applications

Incrementally Loading DWH

- Default Replica Identity may or may not be enough depending on aggregation the use case
- Data is exported just like for a DWH system
- Sometimes a streaming database for aggregation

- Depending on the use case, a custom consumer which does the aggregation might be
desirable

- Aggregation are done on different levels

Aggregation

- Default Replica Identity works fine in this case
- Create a replication slot
- Perform an initial export of the database

- A replica database could be used in this case
- Consume the changes from the replication slot
- Perform a one-to-one mapping of the source database to destination database

Database major upgrades?

- Slow output plugin leads to significant lag
- Huge transactions slow down slot consumption, increase memory requirement and might

render downstream application unusable in the meantime.
- Duplicate entries if progress is not properly handled
- A new and exciting way to send the production database into panic once the WAL directory is

full

Problems we faced … so far

- Use pg_replication_slots
- pg_stat_replication
- Replication origin functions

Monitoring

- Set the absolute minimum replica identity on a need to need basis
- For huge databases, maintain a minimum number replication slots as needed
- For huge DDLs/Transactions (e.g adding a column with default value) and a table with replica

identity FULL:
- Assuming you are brave enough to run a ddl with default value in a single command in

production:
- Set replica identity to Nothing
- Run DDL
- Reset replica identity back to old Value

- Never use the SQL interface in production , except for testing purposes ; it’s a recipe for
disaster

Useful tweaks that helped

- wal2json : https://github.com/eulerto/wal2json
- Pglogical_ouput:

https://github.com/postgrespro/postgres_cluster/tree/master/contrib/pglogical_output
- Our python client ? … open source soonish ….

Useful links

https://github.com/eulerto/wal2json
https://github.com/postgrespro/postgres_cluster/tree/master/contrib/pglogical_output

???

